diff --git a/src/p_local.h b/src/p_local.h
index 472c0706e2c3291d2b0957b4554fc8ce949d0059..f2376494a931169daf46999941134ab01aa0c2a9 100644
--- a/src/p_local.h
+++ b/src/p_local.h
@@ -237,6 +237,11 @@ fixed_t P_GetCeilingZ(mobj_t *mobj, sector_t *sector, fixed_t x, fixed_t y, line
 fixed_t P_GetFOFTopZ(mobj_t *mobj, sector_t *sector, ffloor_t *fof, fixed_t x, fixed_t y, line_t *line);
 fixed_t P_GetFOFBottomZ(mobj_t *mobj, sector_t *sector, ffloor_t *fof, fixed_t x, fixed_t y, line_t *line);
 
+fixed_t P_CameraGetFloorZ(camera_t *mobj, sector_t *sector, fixed_t x, fixed_t y, line_t *line);
+fixed_t P_CameraGetCeilingZ(camera_t *mobj, sector_t *sector, fixed_t x, fixed_t y, line_t *line);
+fixed_t P_CameraGetFOFTopZ(camera_t *mobj, sector_t *sector, ffloor_t *fof, fixed_t x, fixed_t y, line_t *line);
+fixed_t P_CameraGetFOFBottomZ(camera_t *mobj, sector_t *sector, ffloor_t *fof, fixed_t x, fixed_t y, line_t *line);
+
 boolean P_InsideANonSolidFFloor(mobj_t *mobj, ffloor_t *rover);
 boolean P_CheckDeathPitCollide(mobj_t *mo);
 boolean P_CheckSolidLava(mobj_t *mo, ffloor_t *rover);
diff --git a/src/p_map.c b/src/p_map.c
index 4bf0320565ee7eee42d6bf657583aabe80de0c27..e2ea76b88e1fc9de1ab8982b192e63209765e5b8 100644
--- a/src/p_map.c
+++ b/src/p_map.c
@@ -1517,21 +1517,9 @@ boolean P_CheckCameraPosition(fixed_t x, fixed_t y, camera_t *thiscam)
 	// that contains the point.
 	// Any contacted lines the step closer together
 	// will adjust them.
-#ifdef ESLOPE
-	if (newsubsec->sector->f_slope)
-	{
-		tmfloorz = tmdropoffz = P_GetZAt(newsubsec->sector->f_slope, thiscam->x, thiscam->y);
-	}
-	else
-#endif
-	tmfloorz = tmdropoffz = newsubsec->sector->floorheight;
+	tmfloorz = tmdropoffz = P_CameraGetFloorZ(thiscam, newsubsec->sector, x, y, NULL);
 
-#ifdef ESLOPE
-	if (newsubsec->sector->c_slope)
-		tmceilingz = P_GetZAt(newsubsec->sector->c_slope, thiscam->x, thiscam->y);
-	else
-#endif
-	tmceilingz = newsubsec->sector->ceilingheight;
+	tmceilingz = P_CameraGetCeilingZ(thiscam, newsubsec->sector, x, y, NULL);
 
 	// Cameras use the heightsec's heights rather then the actual sector heights.
 	// If you can see through it, why not move the camera through it too?
@@ -1560,15 +1548,8 @@ boolean P_CheckCameraPosition(fixed_t x, fixed_t y, camera_t *thiscam)
 			if (!(rover->flags & FF_BLOCKOTHERS) || !(rover->flags & FF_EXISTS) || !(rover->flags & FF_RENDERALL) || GETSECSPECIAL(rover->master->frontsector->special, 4) == 12)
 				continue;
 
-			fixed_t topheight = *rover->topheight;
-			fixed_t bottomheight = *rover->bottomheight;
-
-/*#ifdef ESLOPE
-			if (rover->t_slope)
-				topheight = P_GetZAt(rover->t_slope, thiscam->x, thiscam->y);
-			if (rover->b_slope)
-				bottomheight = P_GetZAt(rover->b_slope, thiscam->x, thiscam->y);
-#endif*/
+			fixed_t topheight = P_CameraGetFOFTopZ(thiscam, newsubsec->sector, rover, x, y, NULL);
+			fixed_t bottomheight = P_CameraGetFOFBottomZ(thiscam, newsubsec->sector, rover, x, y, NULL);
 
 			delta1 = thiscam->z - (bottomheight
 				+ ((topheight - bottomheight)/2));
diff --git a/src/p_maputl.c b/src/p_maputl.c
index 4037d769bc5d51d04331ecf9512a192441a81a6e..a60d9232d101a97e1c8ade837bb03ecc289fdc07 100644
--- a/src/p_maputl.c
+++ b/src/p_maputl.c
@@ -375,14 +375,8 @@ void P_CameraLineOpening(line_t *linedef)
 	}
 	else
 	{
-		frontfloor = front->floorheight;
-		frontceiling = front->ceilingheight;
-#ifdef ESLOPE
-		if (front->f_slope)
-			frontfloor = P_GetZAt(front->f_slope, camera.x, camera.y);
-		if (front->c_slope)
-			frontceiling = P_GetZAt(front->c_slope, camera.x, camera.y);
-#endif
+		frontfloor = P_CameraGetFloorZ(mapcampointer, front, tmx, tmy, linedef);
+		frontceiling = P_CameraGetCeilingZ(mapcampointer, front, tmx, tmy, linedef);
 	}
 	if (back->camsec >= 0)
 	{
@@ -408,14 +402,8 @@ void P_CameraLineOpening(line_t *linedef)
 	}
 	else
 	{
-		backfloor = back->floorheight;
-		backceiling = back->ceilingheight;
-#ifdef ESLOPE
-		if (back->f_slope)
-			frontfloor = P_GetZAt(back->f_slope, camera.x, camera.y);
-		if (back->c_slope)
-			frontceiling = P_GetZAt(back->c_slope, camera.x, camera.y);
-#endif
+		backfloor = P_CameraGetFloorZ(mapcampointer, back, tmx, tmy, linedef);
+		backceiling = P_CameraGetCeilingZ(mapcampointer, back, tmx, tmy, linedef);
 	}
 
 	{
@@ -460,16 +448,8 @@ void P_CameraLineOpening(line_t *linedef)
 					if (!(rover->flags & FF_BLOCKOTHERS) || !(rover->flags & FF_RENDERALL) || !(rover->flags & FF_EXISTS) || GETSECSPECIAL(rover->master->frontsector->special, 4) == 12)
 						continue;
 
-					fixed_t topheight = *rover->topheight;
-					fixed_t bottomheight = *rover->bottomheight;
-
-/*#ifdef ESLOPE
-					if (rover->t_slope)
-						topheight = P_GetZAt(rover->t_slope, camera.x, camera.y);
-
-					if (rover->b_slope)
-						bottomheight = P_GetZAt(rover->b_slope, camera.x, camera.y);
-#endif // ESLOPE*/
+					fixed_t topheight = P_CameraGetFOFTopZ(mapcampointer, front, rover, tmx, tmy, linedef);
+					fixed_t bottomheight = P_CameraGetFOFBottomZ(mapcampointer, front, rover, tmx, tmy, linedef);
 
 					delta1 = abs(mapcampointer->z - (bottomheight + ((topheight - bottomheight)/2)));
 					delta2 = abs(thingtop - (bottomheight + ((topheight - bottomheight)/2)));
@@ -491,16 +471,8 @@ void P_CameraLineOpening(line_t *linedef)
 					if (!(rover->flags & FF_BLOCKOTHERS) || !(rover->flags & FF_RENDERALL) || !(rover->flags & FF_EXISTS) || GETSECSPECIAL(rover->master->frontsector->special, 4) == 12)
 						continue;
 
-					fixed_t topheight = *rover->topheight;
-					fixed_t bottomheight = *rover->bottomheight;
-
-/*#ifdef ESLOPE
-					if (rover->t_slope)
-						topheight = P_GetZAt(rover->t_slope, camera.x, camera.y);
-
-					if (rover->b_slope)
-						bottomheight = P_GetZAt(rover->b_slope, camera.x, camera.y);
-#endif // ESLOPE*/
+					fixed_t topheight = P_CameraGetFOFTopZ(mapcampointer, back, rover, tmx, tmy, linedef);
+					fixed_t bottomheight = P_CameraGetFOFBottomZ(mapcampointer, back, rover, tmx, tmy, linedef);
 
 					delta1 = abs(mapcampointer->z - (bottomheight + ((topheight - bottomheight)/2)));
 					delta2 = abs(thingtop - (bottomheight + ((topheight - bottomheight)/2)));
diff --git a/src/p_mobj.c b/src/p_mobj.c
index 33dc1cbb0f9ec423331f210f47cfbec54cbdc547..4fe59bfab86a0e24941f61212fdcf3125d0b3d77 100644
--- a/src/p_mobj.c
+++ b/src/p_mobj.c
@@ -1212,6 +1212,494 @@ fixed_t P_GetFOFBottomZ(mobj_t *mobj, sector_t *sector, ffloor_t *fof, fixed_t x
 		return *fof->bottomheight;
 }
 
+// Now do the same as all above, but for cameras because apparently cameras are special?
+fixed_t P_CameraGetFloorZ(camera_t *mobj, sector_t *sector, fixed_t x, fixed_t y, line_t *line) // SRB2CBTODO: This needs to be over all the code
+{
+	I_Assert(mobj != NULL);
+	I_Assert(sector != NULL);
+#ifdef ESLOPE
+	if (sector->f_slope) {
+		fixed_t testx, testy;
+		pslope_t *slope = sector->f_slope;
+
+		// Get the corner of the object that should be the highest on the slope
+		if (slope->d.x < 0)
+			testx = mobj->radius;
+		else
+			testx = -mobj->radius;
+
+		if (slope->d.y < 0)
+			testy = mobj->radius;
+		else
+			testy = -mobj->radius;
+
+		if (slope->zdelta > 0) {
+			testx = -testx;
+			testy = -testy;
+		}
+
+		testx += x;
+		testy += y;
+
+		// If the highest point is in the sector, then we have it easy! Just get the Z at that point
+		if (R_PointInSubsector(testx, testy)->sector == sector)
+			return P_GetZAt(slope, testx, testy);
+
+		// If we're just testing for base sector location (no collision line), just go for the center's spot...
+		// It'll get fixed when we test for collision anyway, and the final result can't be lower than this
+		if (line == NULL)
+			return P_GetZAt(slope, x, y);
+
+		// Alright, so we're sitting on a line that contains our slope sector, and need to figure out the highest point we're touching...
+		// The solution is simple! Get the line's vertices, and pull each one in along its line until it touches the object's bounding box
+		// (assuming it isn't already inside), then test each point's slope Z and return the higher of the two.
+		{
+			vertex_t v1, v2;
+			v1.x = line->v1->x;
+			v1.y = line->v1->y;
+			v2.x = line->v2->x;
+			v2.y = line->v2->y;
+
+			/*CONS_Printf("BEFORE: v1 = %f %f %f\n",
+						FIXED_TO_FLOAT(v1.x),
+						FIXED_TO_FLOAT(v1.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v1.x, v1.y))
+						);
+			CONS_Printf("        v2 = %f %f %f\n",
+						FIXED_TO_FLOAT(v2.x),
+						FIXED_TO_FLOAT(v2.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v2.x, v2.y))
+						);*/
+
+			if (abs(v1.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v1.x-x) - mobj->radius;
+
+				if (v1.x < x) { // Moving right
+					v1.x += diff;
+					v1.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v1.x -= diff;
+					v1.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v1.y-y) > mobj->radius) {
+				// v1's y is out of range, so rein it in
+				fixed_t diff = abs(v1.y-y) - mobj->radius;
+
+				if (v1.y < y) { // Moving up
+					v1.y += diff;
+					v1.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v1.y -= diff;
+					v1.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			if (abs(v2.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v2.x-x) - mobj->radius;
+
+				if (v2.x < x) { // Moving right
+					v2.x += diff;
+					v2.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v2.x -= diff;
+					v2.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v2.y-y) > mobj->radius) {
+				// v2's y is out of range, so rein it in
+				fixed_t diff = abs(v2.y-y) - mobj->radius;
+
+				if (v2.y < y) { // Moving up
+					v2.y += diff;
+					v2.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v2.y -= diff;
+					v2.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			/*CONS_Printf("AFTER:  v1 = %f %f %f\n",
+						FIXED_TO_FLOAT(v1.x),
+						FIXED_TO_FLOAT(v1.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v1.x, v1.y))
+						);
+			CONS_Printf("        v2 = %f %f %f\n",
+						FIXED_TO_FLOAT(v2.x),
+						FIXED_TO_FLOAT(v2.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v2.x, v2.y))
+						);*/
+
+			// Return the higher of the two points
+			return max(
+				P_GetZAt(slope, v1.x, v1.y),
+				P_GetZAt(slope, v2.x, v2.y)
+			);
+		}
+	} else // Well, that makes it easy. Just get the floor height
+#endif
+		return sector->floorheight;
+}
+
+fixed_t P_CameraGetCeilingZ(camera_t *mobj, sector_t *sector, fixed_t x, fixed_t y, line_t *line) // SRB2CBTODO: This needs to be over all the code
+{
+	I_Assert(mobj != NULL);
+	I_Assert(sector != NULL);
+#ifdef ESLOPE
+	if (sector->c_slope) {
+		fixed_t testx, testy;
+		pslope_t *slope = sector->c_slope;
+
+		// Get the corner of the object that should be the lowest on the slope
+		if (slope->d.x < 0)
+			testx = mobj->radius;
+		else
+			testx = -mobj->radius;
+
+		if (slope->d.y < 0)
+			testy = mobj->radius;
+		else
+			testy = -mobj->radius;
+
+		if (slope->zdelta < 0) {
+			testx = -testx;
+			testy = -testy;
+		}
+
+		testx += x;
+		testy += y;
+
+		// If the lowest point is in the sector, then we have it easy! Just get the Z at that point
+		if (R_PointInSubsector(testx, testy)->sector == sector)
+			return P_GetZAt(slope, testx, testy);
+
+		// If we're just testing for base sector location (no collision line), just go for the center's spot...
+		// It'll get fixed when we test for collision anyway, and the final result can't be higher than this
+		if (line == NULL)
+			return P_GetZAt(slope, x, y);
+
+		// Alright, so we're sitting on a line that contains our slope sector, and need to figure out the highest point we're touching...
+		// The solution is simple! Get the line's vertices, and pull each one in along its line until it touches the object's bounding box
+		// (assuming it isn't already inside), then test each point's slope Z and return the lower of the two.
+		{
+			vertex_t v1, v2;
+			v1.x = line->v1->x;
+			v1.y = line->v1->y;
+			v2.x = line->v2->x;
+			v2.y = line->v2->y;
+
+			if (abs(v1.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v1.x-x) - mobj->radius;
+
+				if (v1.x < x) { // Moving right
+					v1.x += diff;
+					v1.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v1.x -= diff;
+					v1.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v1.y-y) > mobj->radius) {
+				// v1's y is out of range, so rein it in
+				fixed_t diff = abs(v1.y-y) - mobj->radius;
+
+				if (v1.y < y) { // Moving up
+					v1.y += diff;
+					v1.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v1.y -= diff;
+					v1.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			if (abs(v2.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v2.x-x) - mobj->radius;
+
+				if (v2.x < x) { // Moving right
+					v2.x += diff;
+					v2.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v2.x -= diff;
+					v2.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v2.y-y) > mobj->radius) {
+				// v2's y is out of range, so rein it in
+				fixed_t diff = abs(v2.y-y) - mobj->radius;
+
+				if (v2.y < y) { // Moving up
+					v2.y += diff;
+					v2.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v2.y -= diff;
+					v2.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			// Return the lower of the two points
+			return min(
+				P_GetZAt(slope, v1.x, v1.y),
+				P_GetZAt(slope, v2.x, v2.y)
+			);
+		}
+	} else // Well, that makes it easy. Just get the ceiling height
+#endif
+		return sector->ceilingheight;
+}
+
+// Do the same as above, but for FOFs!
+fixed_t P_CameraGetFOFTopZ(camera_t *mobj, sector_t *sector, ffloor_t *fof, fixed_t x, fixed_t y, line_t *line) // SRB2CBTODO: This needs to be over all the code
+{
+	I_Assert(mobj != NULL);
+	I_Assert(sector != NULL);
+	I_Assert(fof != NULL);
+#ifdef ESLOPE
+	if (*fof->t_slope) {
+		fixed_t testx, testy;
+		pslope_t *slope = *fof->t_slope;
+
+		// Get the corner of the object that should be the highest on the slope
+		if (slope->d.x < 0)
+			testx = mobj->radius;
+		else
+			testx = -mobj->radius;
+
+		if (slope->d.y < 0)
+			testy = mobj->radius;
+		else
+			testy = -mobj->radius;
+
+		if (slope->zdelta > 0) {
+			testx = -testx;
+			testy = -testy;
+		}
+
+		testx += x;
+		testy += y;
+
+		// If the highest point is in the sector, then we have it easy! Just get the Z at that point
+		if (R_PointInSubsector(testx, testy)->sector == sector)
+			return P_GetZAt(slope, testx, testy);
+
+		// If we're just testing for base sector location (no collision line), just go for the center's spot...
+		// It'll get fixed when we test for collision anyway, and the final result can't be lower than this
+		if (line == NULL)
+			return P_GetZAt(slope, x, y);
+
+		// Alright, so we're sitting on a line that contains our slope sector, and need to figure out the highest point we're touching...
+		// The solution is simple! Get the line's vertices, and pull each one in along its line until it touches the object's bounding box
+		// (assuming it isn't already inside), then test each point's slope Z and return the higher of the two.
+		{
+			vertex_t v1, v2;
+			v1.x = line->v1->x;
+			v1.y = line->v1->y;
+			v2.x = line->v2->x;
+			v2.y = line->v2->y;
+
+			/*CONS_Printf("BEFORE: v1 = %f %f %f\n",
+						FIXED_TO_FLOAT(v1.x),
+						FIXED_TO_FLOAT(v1.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v1.x, v1.y))
+						);
+			CONS_Printf("        v2 = %f %f %f\n",
+						FIXED_TO_FLOAT(v2.x),
+						FIXED_TO_FLOAT(v2.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v2.x, v2.y))
+						);*/
+
+			if (abs(v1.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v1.x-x) - mobj->radius;
+
+				if (v1.x < x) { // Moving right
+					v1.x += diff;
+					v1.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v1.x -= diff;
+					v1.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v1.y-y) > mobj->radius) {
+				// v1's y is out of range, so rein it in
+				fixed_t diff = abs(v1.y-y) - mobj->radius;
+
+				if (v1.y < y) { // Moving up
+					v1.y += diff;
+					v1.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v1.y -= diff;
+					v1.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			if (abs(v2.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v2.x-x) - mobj->radius;
+
+				if (v2.x < x) { // Moving right
+					v2.x += diff;
+					v2.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v2.x -= diff;
+					v2.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v2.y-y) > mobj->radius) {
+				// v2's y is out of range, so rein it in
+				fixed_t diff = abs(v2.y-y) - mobj->radius;
+
+				if (v2.y < y) { // Moving up
+					v2.y += diff;
+					v2.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v2.y -= diff;
+					v2.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			/*CONS_Printf("AFTER:  v1 = %f %f %f\n",
+						FIXED_TO_FLOAT(v1.x),
+						FIXED_TO_FLOAT(v1.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v1.x, v1.y))
+						);
+			CONS_Printf("        v2 = %f %f %f\n",
+						FIXED_TO_FLOAT(v2.x),
+						FIXED_TO_FLOAT(v2.y),
+						FIXED_TO_FLOAT(P_GetZAt(slope, v2.x, v2.y))
+						);*/
+
+			// Return the higher of the two points
+			return max(
+				P_GetZAt(slope, v1.x, v1.y),
+				P_GetZAt(slope, v2.x, v2.y)
+			);
+		}
+	} else // Well, that makes it easy. Just get the top height
+#endif
+		return *fof->topheight;
+}
+
+fixed_t P_CameraGetFOFBottomZ(camera_t *mobj, sector_t *sector, ffloor_t *fof, fixed_t x, fixed_t y, line_t *line) // SRB2CBTODO: This needs to be over all the code
+{
+	I_Assert(mobj != NULL);
+	I_Assert(sector != NULL);
+	I_Assert(fof != NULL);
+#ifdef ESLOPE
+	if (*fof->b_slope) {
+		fixed_t testx, testy;
+		pslope_t *slope = *fof->b_slope;
+
+		// Get the corner of the object that should be the lowest on the slope
+		if (slope->d.x < 0)
+			testx = mobj->radius;
+		else
+			testx = -mobj->radius;
+
+		if (slope->d.y < 0)
+			testy = mobj->radius;
+		else
+			testy = -mobj->radius;
+
+		if (slope->zdelta < 0) {
+			testx = -testx;
+			testy = -testy;
+		}
+
+		testx += x;
+		testy += y;
+
+		// If the lowest point is in the sector, then we have it easy! Just get the Z at that point
+		if (R_PointInSubsector(testx, testy)->sector == sector)
+			return P_GetZAt(slope, testx, testy);
+
+		// If we're just testing for base sector location (no collision line), just go for the center's spot...
+		// It'll get fixed when we test for collision anyway, and the final result can't be higher than this
+		if (line == NULL)
+			return P_GetZAt(slope, x, y);
+
+		// Alright, so we're sitting on a line that contains our slope sector, and need to figure out the highest point we're touching...
+		// The solution is simple! Get the line's vertices, and pull each one in along its line until it touches the object's bounding box
+		// (assuming it isn't already inside), then test each point's slope Z and return the lower of the two.
+		{
+			vertex_t v1, v2;
+			v1.x = line->v1->x;
+			v1.y = line->v1->y;
+			v2.x = line->v2->x;
+			v2.y = line->v2->y;
+
+			if (abs(v1.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v1.x-x) - mobj->radius;
+
+				if (v1.x < x) { // Moving right
+					v1.x += diff;
+					v1.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v1.x -= diff;
+					v1.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v1.y-y) > mobj->radius) {
+				// v1's y is out of range, so rein it in
+				fixed_t diff = abs(v1.y-y) - mobj->radius;
+
+				if (v1.y < y) { // Moving up
+					v1.y += diff;
+					v1.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v1.y -= diff;
+					v1.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			if (abs(v2.x-x) > mobj->radius) {
+				// v1's x is out of range, so rein it in
+				fixed_t diff = abs(v2.x-x) - mobj->radius;
+
+				if (v2.x < x) { // Moving right
+					v2.x += diff;
+					v2.y += FixedMul(diff, FixedDiv(line->dy, line->dx));
+				} else { // Moving left
+					v2.x -= diff;
+					v2.y -= FixedMul(diff, FixedDiv(line->dy, line->dx));
+				}
+			}
+
+			if (abs(v2.y-y) > mobj->radius) {
+				// v2's y is out of range, so rein it in
+				fixed_t diff = abs(v2.y-y) - mobj->radius;
+
+				if (v2.y < y) { // Moving up
+					v2.y += diff;
+					v2.x += FixedMul(diff, FixedDiv(line->dx, line->dy));
+				} else { // Moving down
+					v2.y -= diff;
+					v2.x -= FixedMul(diff, FixedDiv(line->dx, line->dy));
+				}
+			}
+
+			// Return the lower of the two points
+			return min(
+				P_GetZAt(slope, v1.x, v1.y),
+				P_GetZAt(slope, v2.x, v2.y)
+			);
+		}
+	} else // Well, that makes it easy. Just get the bottom height
+#endif
+		return *fof->bottomheight;
+}
+
 static void P_PlayerFlip(mobj_t *mo)
 {
 	if (!mo->player)
@@ -3333,7 +3821,15 @@ static boolean P_CameraCheckHeat(camera_t *thiscam)
 			if (!(rover->flags & FF_EXISTS))
 				continue;
 
-			if (halfheight >= *rover->topheight || halfheight <= *rover->bottomheight)
+			if (halfheight >= (
+#ifdef ESLOPE
+					*rover->t_slope ? P_GetZAt(*rover->t_slope, thiscam->x, thiscam->y) :
+#endif
+					*rover->topheight) || halfheight <= (
+#ifdef ESLOPE
+					*rover->b_slope ? P_GetZAt(*rover->b_slope, thiscam->x, thiscam->y) :
+#endif
+					*rover->bottomheight))
 				continue;
 
 			if (P_FindSpecialLineFromTag(13, rover->master->frontsector->tag, -1) != -1)
@@ -3361,7 +3857,15 @@ static boolean P_CameraCheckWater(camera_t *thiscam)
 			if (!(rover->flags & FF_EXISTS) || !(rover->flags & FF_SWIMMABLE) || rover->flags & FF_BLOCKOTHERS)
 				continue;
 
-			if (halfheight >= *rover->topheight || halfheight <= *rover->bottomheight)
+			if (halfheight >= (
+#ifdef ESLOPE
+					*rover->t_slope ? P_GetZAt(*rover->t_slope, thiscam->x, thiscam->y) :
+#endif
+					*rover->topheight) || halfheight <= (
+#ifdef ESLOPE
+					*rover->b_slope ? P_GetZAt(*rover->b_slope, thiscam->x, thiscam->y) :
+#endif
+					*rover->bottomheight))
 				continue;
 
 			return true;