Skip to content
Snippets Groups Projects
Select Git revision
  • e3cbdf8fabd34ff8c5cf7fc98fde2d377c6eedff
  • next default protected
  • personal-amalgamate
  • ogl-palette-update
  • rphys-update
  • overlay-fpcam
  • inputviewer-toggle
  • master
  • ogl-pal
  • trace
  • uncapped
  • personal
  • palette
  • shadernmus
  • missing-gcc-flags
  • g_findmap-lua
  • pictureformats
  • sprite-fof-plane-sorting-question-mark
  • opengl-skydome-fixes
  • patch-cache-refactor
  • video-refactor
  • SRB2_release_2.2.6
  • SRB2_release_2.2.5
  • SRB2_release_2.2.4
  • SRB2_release_2.2.3
  • SRB2_release_2.2.2
  • SRB2_release_2.2.1
  • SRB2_release_2.2.0
  • SRB2_release_2.1.25
  • SRB2_release_2.1.24
  • SRB2_release_2.1.23
  • SRB2_release_2.1.22
  • SRB2_release_2.1.21
  • SRB2_release_2.1.20
  • SRB2_release_2.1.19
  • SRB2_release_2.1.18
  • td-release-v1.0.0
  • SRB2_release_2.1.17
  • SRB2_release_2.1.16a
  • SRB2_release_2.1.16
  • SRB2_release_2.1.15
41 results

lua_mobjlib.c

Blame
  • Forked from STJr / SRB2
    Source project has a limited visibility.
    am_map.c 25.39 KiB
    // SONIC ROBO BLAST 2
    //-----------------------------------------------------------------------------
    // Copyright (C) 1993-1996 by id Software, Inc.
    // Copyright (C) 1998-2000 by DooM Legacy Team.
    // Copyright (C) 1999-2020 by Sonic Team Junior.
    //
    // This program is free software distributed under the
    // terms of the GNU General Public License, version 2.
    // See the 'LICENSE' file for more details.
    //-----------------------------------------------------------------------------
    /// \file  am_map.c
    /// \brief Code for the 'automap', former Doom feature used for DEVMODE testing
    
    #include "am_map.h"
    #include "g_game.h"
    #include "g_input.h"
    #include "p_local.h"
    #include "p_slopes.h"
    #include "v_video.h"
    #include "i_video.h"
    #include "r_state.h"
    #include "r_draw.h"
    
    #ifdef HWRENDER
    #include "hardware/hw_main.h"
    #endif
    
    // For use if I do walls with outsides/insides
    static const UINT8 REDS        = (8*16);
    static const UINT8 REDRANGE    = 16;
    static const UINT8 GRAYS       = (1*16);
    static const UINT8 GRAYSRANGE  = 16;
    static const UINT8 BROWNS      = (3*16);
    static const UINT8 YELLOWS     = (7*16);
    static const UINT8 GREENS      = (10*16);
    static const UINT8 DBLACK      = 31;
    static const UINT8 DWHITE      = 0;
    
    static const UINT8 NOCLIMBREDS        = 248;
    static const UINT8 NOCLIMBREDRANGE    = 8;
    static const UINT8 NOCLIMBGRAYS       = 204;
    static const UINT8 NOCLIMBBROWNS      = (2*16);
    static const UINT8 NOCLIMBYELLOWS     = (11*16);
    
    
    // Automap colors
    #define BACKGROUND            DBLACK
    #define WALLCOLORS            (REDS + REDRANGE/2)
    #define WALLRANGE             (REDRANGE/2)
    #define NOCLIMBWALLCOLORS     (NOCLIMBREDS + NOCLIMBREDRANGE/2)
    #define NOCLIMBWALLRANGE      (NOCLIMBREDRANGE/2)
    #define THOKWALLCOLORS        REDS
    #define THOKWALLRANGE         REDRANGE
    #define NOCLIMBTHOKWALLCOLORS NOCLIMBREDS
    #define NOCLIMBTHOKWALLRANGE  NOCLIMBREDRANGE
    #define TSWALLCOLORS          GRAYS
    #define TSWALLRANGE           GRAYSRANGE
    #define NOCLIMBTSWALLCOLORS   NOCLIMBGRAYS
    #define FDWALLCOLORS          BROWNS
    #define NOCLIMBFDWALLCOLORS   NOCLIMBBROWNS
    #define CDWALLCOLORS          YELLOWS
    #define NOCLIMBCDWALLCOLORS   NOCLIMBYELLOWS
    #define THINGCOLORS           GREENS
    #define GRIDCOLORS            (GRAYS + GRAYSRANGE/2)
    #define XHAIRCOLORS           DWHITE
    
    // controls
    #define AM_PANUPKEY     KEY_UPARROW
    #define AM_PANDOWNKEY   KEY_DOWNARROW
    #define AM_PANLEFTKEY   KEY_LEFTARROW
    #define AM_PANRIGHTKEY  KEY_RIGHTARROW
    
    #define AM_ZOOMINKEY    '='
    #define AM_ZOOMOUTKEY   '-'
    #define AM_GOBIGKEY     '0'
    
    #define AM_FOLLOWKEY    'f'
    #define AM_GRIDKEY      'g'
    
    #define AM_TOGGLEKEY    KEY_TAB
    
    // scale on entry
    #define INITSCALEMTOF (FRACUNIT/5)
    // how much the automap moves window per tic in frame-buffer coordinates
    // moves 140 pixels in 1 second
    #define F_PANINC 4
    // how much zoom-in per tic
    // goes to 2x in 1 second
    #define M_ZOOMIN ((51*FRACUNIT)/50)
    // how much zoom-out per tic
    // pulls out to 0.5x in 1 second
    #define M_ZOOMOUT ((50*FRACUNIT)/51)
    
    // translates between frame-buffer and map distances
    #define FTOM(x) FixedMul(((x)<<FRACBITS),scale_ftom)
    #define MTOF(x) (FixedMul((x),scale_mtof)>>FRACBITS)
    // translates between frame-buffer and map coordinates
    #define CXMTOF(x) (f_x + MTOF((x)-m_x))
    #define CYMTOF(y) (f_y + (f_h - MTOF((y)-m_y)))
    
    #define MAPBITS (FRACBITS-4)
    #define FRACTOMAPBITS (FRACBITS-MAPBITS)
    
    typedef struct
    {
    	fixed_t x, y;
    } mpoint_t;
    
    typedef struct
    {
    	mpoint_t a, b;
    } mline_t;
    
    //
    // The vector graphics for the automap.
    // A line drawing of the player pointing right,
    //   starting from the middle.
    //
    
    #define PLAYERRADIUS (16*(1<<MAPBITS))
    #define R ((8*PLAYERRADIUS)/7)
    
    static const mline_t player_arrow[] = {
    	{ { -R+R/8, 0 }, { R, 0 } }, // -----
    	{ { R, 0 }, { R-R/2, R/4 } }, // ----->
    	{ { R, 0 }, { R-R/2, -R/4 } },
    	{ { -R+R/8, 0 }, { -R-R/8, R/4 } }, // >---->
    	{ { -R+R/8, 0 }, { -R-R/8, -R/4 } },
    	{ { -R+3*R/8, 0 }, { -R+R/8, R/4 } }, // >>--->
    	{ { -R+3*R/8, 0 }, { -R+R/8, -R/4 } }
    };
    #undef R
    #define NUMPLYRLINES (sizeof (player_arrow)/sizeof (mline_t))
    
    #define R (FRACUNIT)
    static const mline_t cross_mark[] =
    {
    	{ { -R, 0 }, { R, 0} },
    	{ { 0, -R }, { 0, R } },
    };
    #undef R
    #define NUMCROSSMARKLINES (sizeof(cross_mark)/sizeof(mline_t))
    
    #define R (FRACUNIT)
    static const mline_t thintriangle_guy[] = {
    	{ { (-1*R)/2, (-7*R)/10 }, {        R, 0         } },
    	{ {        R, 0         }, { (-1*R)/2, (7*R)/10 } },
    	{ { (-1*R)/2, (7*R)/10 }, { (-1*R)/2, (-7*R)/10 } }
    };
    #undef R
    #define NUMTHINTRIANGLEGUYLINES (sizeof (thintriangle_guy)/sizeof (mline_t))
    
    static boolean bigstate;	// user view and large view (full map view)
    static boolean draw_grid = false;
    
    boolean automapactive = false;
    boolean am_recalc = false; //added : 05-02-98 : true when screen size changes
    static boolean am_stopped = true;
    
    static INT32 f_x, f_y;	// location of window on screen (always zero for both)
    static INT32 f_w, f_h;	// size of window on screen (always the screen width and height respectively)
    
    static boolean m_keydown[4]; // which window panning keys are being pressed down?
    static mpoint_t m_paninc; // how far the window pans each tic (map coords)
    static fixed_t mtof_zoommul; // how far the window zooms in each tic (map coords)
    static fixed_t ftom_zoommul; // how far the window zooms in each tic (fb coords)
    
    static fixed_t m_x, m_y;   // LL x,y where the window is on the map (map coords)
    static fixed_t m_x2, m_y2; // UR x,y where the window is on the map (map coords)
    
    //
    // width/height of window on map (map coords)
    //
    static fixed_t m_w;
    static fixed_t m_h;
    
    // based on level size
    static fixed_t min_x;
    static fixed_t min_y;
    static fixed_t max_x;
    static fixed_t max_y;
    
    static fixed_t max_w; // max_x-min_x,
    static fixed_t max_h; // max_y-min_y
    
    static fixed_t min_scale_mtof; // used to tell when to stop zooming out
    static fixed_t max_scale_mtof; // used to tell when to stop zooming in
    
    // old stuff for recovery later
    static fixed_t old_m_w, old_m_h;
    static fixed_t old_m_x, old_m_y;
    
    // old location used by the Follower routine
    static mpoint_t f_oldloc;
    
    // used by MTOF to scale from map-to-frame-buffer coords
    static fixed_t scale_mtof = (fixed_t)INITSCALEMTOF;
    // used by FTOM to scale from frame-buffer-to-map coords (=1/scale_mtof)
    static fixed_t scale_ftom;
    
    static player_t *plr; // the player represented by an arrow
    
    static boolean followplayer = true; // specifies whether to follow the player around
    
    // function for drawing lines, depends on rendermode
    typedef void (*AMDRAWFLINEFUNC) (const fline_t *fl, INT32 color);
    static AMDRAWFLINEFUNC AM_drawFline;
    
    static void AM_drawPixel(INT32 xx, INT32 yy, INT32 cc);
    static void AM_drawFline_soft(const fline_t *fl, INT32 color);
    
    static void AM_activateNewScale(void)
    {
    	m_x += m_w/2;
    	m_y += m_h/2;
    	m_w = FTOM(f_w);
    	m_h = FTOM(f_h);
    	m_x -= m_w/2;
    	m_y -= m_h/2;
    	m_x2 = m_x + m_w;
    	m_y2 = m_y + m_h;
    }
    
    static inline void AM_saveScaleAndLoc(void)
    {
    	old_m_x = m_x;
    	old_m_y = m_y;
    	old_m_w = m_w;
    	old_m_h = m_h;
    }
    
    static inline void AM_restoreScaleAndLoc(void)
    {
    	m_w = old_m_w;
    	m_h = old_m_h;
    	if (!followplayer)
    	{
    		m_x = old_m_x;
    		m_y = old_m_y;
    	}
    	else
    	{
    		m_x = (plr->mo->x >> FRACTOMAPBITS) - m_w/2;
    		m_y = (plr->mo->y >> FRACTOMAPBITS) - m_h/2;
    	}
    	m_x2 = m_x + m_w;
    	m_y2 = m_y + m_h;
    
    	// Change the scaling multipliers
    	scale_mtof = FixedDiv(f_w<<FRACBITS, m_w);
    	scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
    }
    
    /** Determines the bounding box around all vertices.
      * This is used to set global variables controlling the zoom range.
      */
    static void AM_findMinMaxBoundaries(void)
    {
    	size_t i;
    	fixed_t a;
    	fixed_t b;
    
    	min_x = min_y = +INT32_MAX;
    	max_x = max_y = -INT32_MAX;
    
    	for (i = 0; i < numvertexes; i++)
    	{
    		if (vertexes[i].x < min_x)
    			min_x = vertexes[i].x;
    		else if (vertexes[i].x > max_x)
    			max_x = vertexes[i].x;
    
    		if (vertexes[i].y < min_y)
    			min_y = vertexes[i].y;
    		else if (vertexes[i].y > max_y)
    			max_y = vertexes[i].y;
    	}
    
    	max_w = (max_x >>= FRACTOMAPBITS) - (min_x >>= FRACTOMAPBITS);
    	max_h = (max_y >>= FRACTOMAPBITS) - (min_y >>= FRACTOMAPBITS);
    
    	a = FixedDiv(f_w<<FRACBITS, max_w);
    	b = FixedDiv(f_h<<FRACBITS, max_h);
    
    	min_scale_mtof = a < b ? a : b;
    	max_scale_mtof = FixedDiv(f_h<<FRACBITS, 2*PLAYERRADIUS);
    }
    
    static void AM_changeWindowLoc(void)
    {
    	if (m_paninc.x || m_paninc.y)
    	{
    		followplayer = false;
    		f_oldloc.x = INT32_MAX;
    	}
    
    	m_x += m_paninc.x;
    	m_y += m_paninc.y;
    
    	if (m_x + m_w/2 > max_x)
    		m_x = max_x - m_w/2;
    	else if (m_x + m_w/2 < min_x)
    		m_x = min_x - m_w/2;
    
    	if (m_y + m_h/2 > max_y)
    		m_y = max_y - m_h/2;
    	else if (m_y + m_h/2 < min_y)
    		m_y = min_y - m_h/2;
    
    	m_x2 = m_x + m_w;
    	m_y2 = m_y + m_h;
    }
    
    static void AM_initVariables(void)
    {
    	INT32 pnum;
    
    	automapactive = true;
    	f_oldloc.x = INT32_MAX;
    
    	m_paninc.x = m_paninc.y = 0;
    	ftom_zoommul = FRACUNIT;
    	mtof_zoommul = FRACUNIT;
    
    	m_w = FTOM(f_w);
    	m_h = FTOM(f_h);
    
    	// find player to center on initially
    	if (!playeringame[pnum = consoleplayer])
    		for (pnum = 0; pnum < MAXPLAYERS; pnum++)
    			if (playeringame[pnum])
    				break;
    
    	plr = &players[pnum];
    	if (plr != NULL && plr->mo != NULL)
    	{
    		m_x = (plr->mo->x >> FRACTOMAPBITS) - m_w/2;
    		m_y = (plr->mo->y >> FRACTOMAPBITS) - m_h/2;
    	}
    	AM_changeWindowLoc();
    
    	// for saving & restoring
    	old_m_x = m_x;
    	old_m_y = m_y;
    	old_m_w = m_w;
    	old_m_h = m_h;
    }
    
    //
    // Called when the screen size changes.
    //
    static void AM_FrameBufferInit(void)
    {
    	f_x = f_y = 0;
    	f_w = vid.width;
    	f_h = vid.height;
    }
    
    //
    // should be called at the start of every level
    // right now, i figure it out myself
    //
    static void AM_LevelInit(void)
    {
    	AM_findMinMaxBoundaries();
    	scale_mtof = FixedDiv(min_scale_mtof*10, 7*FRACUNIT);
    	if (scale_mtof > max_scale_mtof)
    		scale_mtof = min_scale_mtof;
    	scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
    }
    
    /** Disables automap.
      *
      * \sa AM_Start
      */
    void AM_Stop(void)
    {
    	automapactive = false;
    	am_stopped = true;
    }
    
    /** Enables automap.
      *
      * \sa AM_Stop
      */
    void AM_Start(void)
    {
    	static INT32 lastlevel = -1;
    
    	if (!am_stopped)
    		AM_Stop();
    	am_stopped = false;
    	if (lastlevel != gamemap || am_recalc) // screen size changed
    	{
    		AM_FrameBufferInit();
    		if (lastlevel != gamemap)
    		{
    			AM_LevelInit();
    			lastlevel = gamemap;
    		}
    		am_recalc = false;
    	}
    	AM_initVariables();
    }
    
    //
    // set the window scale to the maximum size
    //
    static void AM_minOutWindowScale(void)
    {
    	scale_mtof = min_scale_mtof;
    	scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
    	AM_activateNewScale();
    }
    
    //
    // set the window scale to the minimum size
    //
    static void AM_maxOutWindowScale(void)
    {
    	scale_mtof = max_scale_mtof;
    	scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
    	AM_activateNewScale();
    }
    
    //
    // set window panning
    //
    static void AM_setWindowPanning(void)
    {
    	// up and down
    	if (m_keydown[2]) // pan up
    		m_paninc.y = FTOM(F_PANINC);
    	else if (m_keydown[3]) // pan down
    		m_paninc.y = -FTOM(F_PANINC);
    	else
    		m_paninc.y = 0;
    
    	// left and right
    	if (m_keydown[0]) // pan right
    		m_paninc.x = FTOM(F_PANINC);
    	else if (m_keydown[1]) // pan left
    		m_paninc.x = -FTOM(F_PANINC);
    	else
    		m_paninc.x = 0;
    }
    
    /** Responds to user inputs in automap mode.
      *
      * \param ev Event to possibly respond to.
      * \return True if the automap responder ate the event.
      */
    boolean AM_Responder(event_t *ev)
    {
    	INT32 rc = false;
    
    	if (devparm || cv_debug) // only automap in Debug Tails 01-19-2001
    	{
    		if (!automapactive)
    		{
    			if (ev->type == ev_keydown && ev->data1 == AM_TOGGLEKEY)
    			{
    				//faB: prevent alt-tab in win32 version to activate automap just before
    				//     minimizing the app; doesn't do any harm to the DOS version
    				if (!gamekeydown[KEY_LALT]  && !gamekeydown[KEY_RALT])
    				{
    					bigstate = 0; //added : 24-01-98 : toggle off large view
    					AM_Start();
    					rc = true;
    				}
    			}
    		}
    		else if (ev->type == ev_keydown)
    		{
    			rc = true;
    			switch (ev->data1)
    			{
    				case AM_PANRIGHTKEY: // pan right
    					if (!followplayer)
    					{
    						m_keydown[0] = true;
    						AM_setWindowPanning();
    					}
    					else
    						rc = false;
    					break;
    				case AM_PANLEFTKEY: // pan left
    					if (!followplayer)
    					{
    						m_keydown[1] = true;
    						AM_setWindowPanning();
    					}
    					else
    						rc = false;
    					break;
    				case AM_PANUPKEY: // pan up
    					if (!followplayer)
    					{
    						m_keydown[2] = true;
    						AM_setWindowPanning();
    					}
    					else
    						rc = false;
    					break;
    				case AM_PANDOWNKEY: // pan down
    					if (!followplayer)
    					{
    						m_keydown[3] = true;
    						AM_setWindowPanning();
    					}
    					else
    						rc = false;
    					break;
    				case AM_ZOOMOUTKEY: // zoom out
    					mtof_zoommul = M_ZOOMOUT;
    					ftom_zoommul = M_ZOOMIN;
    					AM_setWindowPanning();
    					break;
    				case AM_ZOOMINKEY: // zoom in
    					mtof_zoommul = M_ZOOMIN;
    					ftom_zoommul = M_ZOOMOUT;
    					AM_setWindowPanning();
    					break;
    				case AM_TOGGLEKEY:
    					AM_Stop();
    					break;
    				case AM_GOBIGKEY:
    					bigstate = !bigstate;
    					if (bigstate)
    					{
    						AM_saveScaleAndLoc();
    						AM_minOutWindowScale();
    					}
    					else
    						AM_restoreScaleAndLoc();
    					AM_setWindowPanning();
    					break;
    				case AM_FOLLOWKEY:
    					followplayer = !followplayer;
    					f_oldloc.x = INT32_MAX;
    					break;
    				case AM_GRIDKEY:
    					draw_grid = !draw_grid;
    					break;
    				default:
    					rc = false;
    			}
    		}
    
    		else if (ev->type == ev_keyup)
    		{
    			rc = false;
    			switch (ev->data1)
    			{
    				case AM_PANRIGHTKEY:
    					if (!followplayer)
    					{
    						m_keydown[0] = false;
    						AM_setWindowPanning();
    					}
    					break;
    				case AM_PANLEFTKEY:
    					if (!followplayer)
    					{
    						m_keydown[1] = false;
    						AM_setWindowPanning();
    					}
    					break;
    				case AM_PANUPKEY:
    					if (!followplayer)
    					{
    						m_keydown[2] = false;
    						AM_setWindowPanning();
    					}
    					break;
    				case AM_PANDOWNKEY:
    					if (!followplayer)
    					{
    						m_keydown[3] = false;
    						AM_setWindowPanning();
    					}
    					break;
    				case AM_ZOOMOUTKEY:
    				case AM_ZOOMINKEY:
    					mtof_zoommul = FRACUNIT;
    					ftom_zoommul = FRACUNIT;
    					break;
    			}
    		}
    	}
    
    	return rc;
    }
    
    /** Makes a zooming change take effect.
      */
    static inline void AM_changeWindowScale(void)
    {
    	// Change the scaling multipliers
    	scale_mtof = FixedMul(scale_mtof, mtof_zoommul);
    	scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
    
    	if (scale_mtof < min_scale_mtof)
    		AM_minOutWindowScale();
    	else if (scale_mtof > max_scale_mtof)
    		AM_maxOutWindowScale();
    	else
    		AM_activateNewScale();
    }
    
    static inline void AM_doFollowPlayer(void)
    {
    	if (f_oldloc.x != plr->mo->x || f_oldloc.y != plr->mo->y)
    	{
    		m_x = FTOM(MTOF(plr->mo->x >> FRACTOMAPBITS)) - m_w/2;
    		m_y = FTOM(MTOF(plr->mo->y >> FRACTOMAPBITS)) - m_h/2;
    		m_x2 = m_x + m_w;
    		m_y2 = m_y + m_h;
    		f_oldloc.x = plr->mo->x;
    		f_oldloc.y = plr->mo->y;
    	}
    }
    
    /** Updates automap on a game tic, while the automap is enabled.
      */
    void AM_Ticker(void)
    {
    	if (!cv_debug)
    		AM_Stop();
    
    	if (dedicated || !automapactive)
    		return;
    
    	if (followplayer)
    		AM_doFollowPlayer();
    
    	// Change the zoom if necessary
    	if (ftom_zoommul != FRACUNIT)
    		AM_changeWindowScale();
    
    	// Change x,y location
    	if (m_paninc.x || m_paninc.y)
    		AM_changeWindowLoc();
    }
    
    /** Clears the automap framebuffer.
      *
      * \param color Color to erase to.
      */
    static void AM_clearFB(INT32 color)
    {
    	V_DrawFill(f_x, f_y, f_w, f_h, color|V_NOSCALESTART);
    }
    
    /** Performs automap clipping of lines.
      * Based on Cohen-Sutherland clipping algorithm but with a slightly
      * faster reject and precalculated slopes. If the speed is needed,
      * use a hash algorithm to handle the common cases.
      *
      * \param ml Line to clip.
      * \param fl Resulting framebuffer coordinates?
      * \return True if the line is inside the boundaries.
      */
    static boolean AM_clipMline(const mline_t *ml, fline_t *fl)
    {
    	enum
    	{
    		LEFT   = 1,
    		RIGHT  = 2,
    		BOTTOM = 4,
    		TOP    = 8
    	};
    
    	register INT32 outcode1 = 0, outcode2 = 0, outside;
    	fpoint_t tmp ={0,0};
    	INT32 dx, dy;
    
    #define DOOUTCODE(oc, mx, my) \
    	(oc) = 0; \
    	if ((my) < 0) (oc) |= TOP; \
    	else if ((my) >= f_h) (oc) |= BOTTOM; \
    	if ((mx) < 0) (oc) |= LEFT; \
    	else if ((mx) >= f_w) (oc) |= RIGHT;
    
    	// do trivial rejects and outcodes
    	if (ml->a.y > m_y2)
    		outcode1 = TOP;
    	else if (ml->a.y < m_y)
    		outcode1 = BOTTOM;
    
    	if (ml->b.y > m_y2)
    		outcode2 = TOP;
    	else if (ml->b.y < m_y)
    		outcode2 = BOTTOM;
    
    	if (outcode1 & outcode2)
    		return false; // trivially outside
    
    	if (ml->a.x < m_x)
    		outcode1 |= LEFT;
    	else if (ml->a.x > m_x2)
    		outcode1 |= RIGHT;
    
    	if (ml->b.x < m_x)
    		outcode2 |= LEFT;
    	else if (ml->b.x > m_x2)
    		outcode2 |= RIGHT;
    
    	if (outcode1 & outcode2)
    		return false; // trivially outside
    
    	// transform to frame-buffer coordinates.
    	fl->a.x = CXMTOF(ml->a.x);
    	fl->a.y = CYMTOF(ml->a.y);
    	fl->b.x = CXMTOF(ml->b.x);
    	fl->b.y = CYMTOF(ml->b.y);
    
    	DOOUTCODE(outcode1, fl->a.x, fl->a.y);
    	DOOUTCODE(outcode2, fl->b.x, fl->b.y);
    
    	if (outcode1 & outcode2)
    		return false;
    
    	while (outcode1 | outcode2)
    	{
    		// may be partially inside box
    		// find an outside point
    		if (outcode1)
    			outside = outcode1;
    		else
    			outside = outcode2;
    
    		// clip to each side
    		if (outside & TOP)
    		{
    			dy = fl->a.y - fl->b.y;
    			dx = fl->b.x - fl->a.x;
    			tmp.x = fl->a.x + (dx*(fl->a.y))/dy;
    			tmp.y = 0;
    		}
    		else if (outside & BOTTOM)
    		{
    			dy = fl->a.y - fl->b.y;
    			dx = fl->b.x - fl->a.x;
    			tmp.x = fl->a.x + (dx*(fl->a.y-f_h))/dy;
    			tmp.y = f_h-1;
    		}
    		else if (outside & RIGHT)
    		{
    			dy = fl->b.y - fl->a.y;
    			dx = fl->b.x - fl->a.x;
    			tmp.y = fl->a.y + (dy*(f_w-1 - fl->a.x))/dx;
    			tmp.x = f_w-1;
    		}
    		else if (outside & LEFT)
    		{
    			dy = fl->b.y - fl->a.y;
    			dx = fl->b.x - fl->a.x;
    			tmp.y = fl->a.y + (dy*(-fl->a.x))/dx;
    			tmp.x = 0;
    		}
    
    		if (outside == outcode1)
    		{
    			fl->a = tmp;
    			DOOUTCODE(outcode1, fl->a.x, fl->a.y);
    		}
    		else
    		{
    			fl->b = tmp;
    			DOOUTCODE(outcode2, fl->b.x, fl->b.y);
    		}
    
    		if (outcode1 & outcode2)
    			return false; // trivially outside
    	}
    
    	return true;
    }
    #undef DOOUTCODE
    
    //
    // Draws a pixel.
    //
    static void AM_drawPixel(INT32 xx, INT32 yy, INT32 cc)
    {
    	UINT8 *dest = screens[0];
    	if (xx < 0 || yy < 0 || xx >= vid.width || yy >= vid.height)
    		return; // off the screen
    	dest[(yy*vid.width) + xx] = cc;
    }
    
    //
    // Classic Bresenham w/ whatever optimizations needed for speed
    //
    static void AM_drawFline_soft(const fline_t *fl, INT32 color)
    {
    	INT32 x, y, dx, dy, sx, sy, ax, ay, d;
    
    #ifdef _DEBUG
    	static INT32 num = 0;
    
    	// For debugging only
    	if (fl->a.x < 0 || fl->a.x >= f_w
    	|| fl->a.y < 0 || fl->a.y >= f_h
    	|| fl->b.x < 0 || fl->b.x >= f_w
    	|| fl->b.y < 0 || fl->b.y >= f_h)
    	{
    		CONS_Debug(DBG_RENDER, "line clipping problem %d\n", num++);
    		return;
    	}
    #endif
    
    	dx = fl->b.x - fl->a.x;
    	ax = 2 * (dx < 0 ? -dx : dx);
    	sx = dx < 0 ? -1 : 1;
    
    	dy = fl->b.y - fl->a.y;
    	ay = 2 * (dy < 0 ? -dy : dy);
    	sy = dy < 0 ? -1 : 1;
    
    	x = fl->a.x;
    	y = fl->a.y;
    
    	if (ax > ay)
    	{
    		d = ay - ax/2;
    		for (;;)
    		{
    			AM_drawPixel(x, y, color);
    			if (x == fl->b.x)
    				return;
    			if (d >= 0)
    			{
    				y += sy;
    				d -= ax;
    			}
    			x += sx;
    			d += ay;
    		}
    	}
    	else
    	{
    		d = ax - ay/2;
    		for (;;)
    		{
    			AM_drawPixel(x, y, color);
    			if (y == fl->b.y)
    				return;
    			if (d >= 0)
    			{
    				x += sx;
    				d -= ay;
    			}
    			y += sy;
    			d += ax;
    		}
    	}
    }
    
    //
    // Clip lines, draw visible parts of lines.
    //
    static void AM_drawMline(const mline_t *ml, INT32 color)
    {
    	static fline_t fl;
    
    	if (AM_clipMline(ml, &fl))
    		AM_drawFline(&fl, color); // draws it on frame buffer using fb coords
    }
    
    //
    // Draws flat (floor/ceiling tile) aligned grid lines.
    //
    static void AM_drawGrid(INT32 color)
    {
    	fixed_t x, y;
    	fixed_t start, end;
    	mline_t ml;
    	fixed_t gridsize = (MAPBLOCKUNITS<<MAPBITS);
    
    	// Figure out start of vertical gridlines
    	start = m_x;
    	if ((start - (bmaporgx>>FRACTOMAPBITS)) % gridsize)
    		start += gridsize - ((start - (bmaporgx>>FRACTOMAPBITS)) % gridsize);
    	end = m_x + m_w;
    
    	// draw vertical gridlines
    	ml.a.y = m_y;
    	ml.b.y = m_y + m_h;
    	for (x = start; x < end; x += gridsize)
    	{
    		ml.a.x = x;
    		ml.b.x = x;
    		AM_drawMline(&ml, color);
    	}
    
    	// Figure out start of horizontal gridlines
    	start = m_y;
    	if ((start - (bmaporgy>>FRACTOMAPBITS)) % gridsize)
    		start += gridsize - ((start - (bmaporgy>>FRACTOMAPBITS)) % gridsize);
    	end = m_y + m_h;
    
    	// draw horizontal gridlines
    	ml.a.x = m_x;
    	ml.b.x = m_x + m_w;
    	for (y = start; y < end; y += gridsize)
    	{
    		ml.a.y = y;
    		ml.b.y = y;
    		AM_drawMline(&ml, color);
    	}
    }
    
    //
    // Determines visible lines, draws them.
    // This is LineDef based, not LineSeg based.
    //
    static inline void AM_drawWalls(void)
    {
    	size_t i;
    	static mline_t l;
    	fixed_t frontf1,frontf2, frontc1, frontc2; // front floor/ceiling ends
    	fixed_t backf1 = 0, backf2 = 0, backc1 = 0, backc2 = 0; // back floor ceiling ends
    
    	for (i = 0; i < numlines; i++)
    	{
    		l.a.x = lines[i].v1->x >> FRACTOMAPBITS;
    		l.a.y = lines[i].v1->y >> FRACTOMAPBITS;
    		l.b.x = lines[i].v2->x >> FRACTOMAPBITS;
    		l.b.y = lines[i].v2->y >> FRACTOMAPBITS;
    
    #define SLOPEPARAMS(slope, end1, end2, normalheight) \
    		end1 = P_GetZAt(slope, lines[i].v1->x, lines[i].v1->y, normalheight); \
    		end2 = P_GetZAt(slope, lines[i].v2->x, lines[i].v2->y, normalheight);
    
    		SLOPEPARAMS(lines[i].frontsector->f_slope, frontf1, frontf2, lines[i].frontsector->floorheight)
    		SLOPEPARAMS(lines[i].frontsector->c_slope, frontc1, frontc2, lines[i].frontsector->ceilingheight)
    		if (lines[i].backsector) {
    			SLOPEPARAMS(lines[i].backsector->f_slope, backf1,  backf2,  lines[i].backsector->floorheight)
    			SLOPEPARAMS(lines[i].backsector->c_slope, backc1,  backc2,  lines[i].backsector->ceilingheight)
    		}
    #undef SLOPEPARAMS
    
    		if (!lines[i].backsector) // 1-sided
    		{
    			if (lines[i].flags & ML_NOCLIMB)
    				AM_drawMline(&l, NOCLIMBWALLCOLORS);
    			else
    				AM_drawMline(&l, WALLCOLORS);
    		}
    		else if ((backf1 == backc1 && backf2 == backc2) // Back is thok barrier
    				 || (frontf1 == frontc1 && frontf2 == frontc2)) // Front is thok barrier
    		{
    			if (backf1 == backc1 && backf2 == backc2
    				&& frontf1 == frontc1 && frontf2 == frontc2) // BOTH are thok barriers
    			{
    				if (lines[i].flags & ML_NOCLIMB)
    					AM_drawMline(&l, NOCLIMBTSWALLCOLORS);
    				else
    					AM_drawMline(&l, TSWALLCOLORS);
    			}
    			else
    			{
    				if (lines[i].flags & ML_NOCLIMB)
    					AM_drawMline(&l, NOCLIMBTHOKWALLCOLORS);
    				else
    					AM_drawMline(&l, THOKWALLCOLORS);
    			}
    		}
    		else
    		{
    			if (lines[i].flags & ML_NOCLIMB) {
    				if (backf1 != frontf1 || backf2 != frontf2) {
    					AM_drawMline(&l, NOCLIMBFDWALLCOLORS); // floor level change
    				}
    				else if (backc1 != frontc1 || backc2 != frontc2) {
    					AM_drawMline(&l, NOCLIMBCDWALLCOLORS); // ceiling level change
    				}
    				else
    					AM_drawMline(&l, NOCLIMBTSWALLCOLORS);
    			}
    			else
    			{
    				if (backf1 != frontf1 || backf2 != frontf2) {
    					AM_drawMline(&l, FDWALLCOLORS); // floor level change
    				}
    				else if (backc1 != frontc1 || backc2 != frontc2) {
    					AM_drawMline(&l, CDWALLCOLORS); // ceiling level change
    				}
    				else
    					AM_drawMline(&l, TSWALLCOLORS);
    			}
    		}
    	}
    }
    
    //
    // Rotation in 2D.
    // Used to rotate player arrow line character.
    //
    static void AM_rotate(fixed_t *x, fixed_t *y, angle_t a)
    {
    	fixed_t tmpx;
    
    	tmpx = FixedMul(*x, FINECOSINE(a>>ANGLETOFINESHIFT))
    		- FixedMul(*y, FINESINE(a>>ANGLETOFINESHIFT));
    
    	*y = FixedMul(*x, FINESINE(a>>ANGLETOFINESHIFT))
    		+ FixedMul(*y, FINECOSINE(a>>ANGLETOFINESHIFT));
    
    	*x = tmpx;
    }
    
    static void AM_drawLineCharacter(const mline_t *lineguy, size_t lineguylines, fixed_t scale, angle_t angle,
    	INT32 color, fixed_t x, fixed_t y)
    {
    	size_t i;
    	mline_t l;
    
    	for (i = 0; i < lineguylines; i++)
    	{
    		l.a.x = lineguy[i].a.x;
    		l.a.y = lineguy[i].a.y;
    
    		if (scale)
    		{
    			l.a.x = FixedMul(scale, l.a.x);
    			l.a.y = FixedMul(scale, l.a.y);
    		}
    
    		if (angle)
    			AM_rotate(&l.a.x, &l.a.y, angle);
    
    		l.a.x += x;
    		l.a.y += y;
    
    		l.b.x = lineguy[i].b.x;
    		l.b.y = lineguy[i].b.y;
    
    		if (scale)
    		{
    			l.b.x = FixedMul(scale, l.b.x);
    			l.b.y = FixedMul(scale, l.b.y);
    		}
    
    		if (angle)
    			AM_rotate(&l.b.x, &l.b.y, angle);
    
    		l.b.x += x;
    		l.b.y += y;
    
    		l.a.x >>= FRACTOMAPBITS;
    		l.a.y >>= FRACTOMAPBITS;
    		l.b.x >>= FRACTOMAPBITS;
    		l.b.y >>= FRACTOMAPBITS;
    
    		AM_drawMline(&l, color);
    	}
    }
    
    static inline void AM_drawPlayers(void)
    {
    	INT32 i;
    	player_t *p;
    	INT32 color = GREENS;
    
    	if (!multiplayer)
    	{
    		AM_drawLineCharacter(player_arrow, NUMPLYRLINES, 16<<FRACBITS, plr->mo->angle, DWHITE, plr->mo->x, plr->mo->y);
    		return;
    	}
    
    	// multiplayer (how??)
    	for (i = 0; i < MAXPLAYERS; i++)
    	{
    		if (!playeringame[i] || players[i].spectator)
    			continue;
    
    		p = &players[i];
    		if (p->skincolor > 0)
    			color = R_GetTranslationColormap(TC_DEFAULT, p->skincolor, GTC_CACHE)[GREENS + 8];
    
    		AM_drawLineCharacter(player_arrow, NUMPLYRLINES, 16<<FRACBITS, p->mo->angle, color, p->mo->x, p->mo->y);
    	}
    }
    
    static inline void AM_drawThings(UINT8 colors)
    {
    	size_t i;
    	mobj_t *t;
    
    	for (i = 0; i < numsectors; i++)
    	{
    		t = sectors[i].thinglist;
    		while (t)
    		{
    			AM_drawLineCharacter(thintriangle_guy, NUMTHINTRIANGLEGUYLINES, 16<<FRACBITS, t->angle, colors, t->x, t->y);
    			t = t->snext;
    		}
    	}
    }
    
    /** Draws the crosshair.
      *
      * \param color Color for the crosshair.
      */
    static inline void AM_drawCrosshair(UINT8 color)
    {
    	const fixed_t scale = 4<<FRACBITS;
    	size_t i;
    	fline_t fl;
    
    	for (i = 0; i < NUMCROSSMARKLINES; i++)
    	{
    		fl.a.x = FixedMul(cross_mark[i].a.x, scale) >> FRACBITS;
    		fl.a.y = FixedMul(cross_mark[i].a.y, scale) >> FRACBITS;
    		fl.b.x = FixedMul(cross_mark[i].b.x, scale) >> FRACBITS;
    		fl.b.y = FixedMul(cross_mark[i].b.y, scale) >> FRACBITS;
    
    		fl.a.x += f_x + (f_w / 2);
    		fl.a.y += f_y + (f_h / 2);
    		fl.b.x += f_x + (f_w / 2);
    		fl.b.y += f_y + (f_h / 2);
    
    		AM_drawFline(&fl, color);
    	}
    }
    
    /** Draws the automap.
      */
    void AM_Drawer(void)
    {
    	if (!automapactive)
    		return;
    
    	AM_drawFline = AM_drawFline_soft;
    #ifdef HWRENDER
    	if (rendermode == render_opengl)
    		AM_drawFline = HWR_drawAMline;
    #endif
    
    	AM_clearFB(BACKGROUND);
    	if (draw_grid) AM_drawGrid(GRIDCOLORS);
    	AM_drawWalls();
    	AM_drawPlayers();
    	AM_drawThings(THINGCOLORS);
    
    	if (!followplayer) AM_drawCrosshair(XHAIRCOLORS);
    }